BIOELECTRICIDAD y MODELADO BIOELÉCTRICO DEL CORAZÓN

Universidad Politécnica de Valencia, España Universidad Nacional de Lomas de Zamora, Argentina

Prof. José M. Ferrero

Universidad Politécnica de Valencia, España

TEMA 9

SIMULACIÓN COMPUTACIONAL DE ARRITMIAS CARDIACAS

Chema Ferrero

Bioelectricidad y Modelado Computacional del Corazón

TEMA 9

SIMULACIÓN COMPUTACIONAL DE ARRITMIAS CARDIACAS

- 9.1.- Fundamentos bioeléctricos de las arritmias por reentrada
- 9.2.- Simulación computacional de arritmias en isquemia miocárdica aguda
- 9.3.- Efecto de fármacos en arritmias en isquemia miocárdica aguda
- 9.4.- Terapia de ablación en infarto crónico
- 9.5.- Construcción de un modelo cardiaco 3D personalizado a paciente
- 9.6.- Mejora de la terapia de ablación en pacientes post-infarto mediante simulación

En episodios anteriores...

En episodios anteriores...

$$\beta \vec{\nabla} \cdot (\sigma_i \vec{\nabla} V_m) = C_m \frac{\partial V_m}{\partial t} + \sum_f \bar{G}_{Sf} p_{oSf} \left(V_m - E_S \right) + \sum_{b,i} I_{b,i} + I_{est}$$

$$p_{oSf} = \prod_i f_{iSf} (t, V_m) \qquad E_S = \frac{RT}{z_S F} \ln \frac{\left[S\right]_e}{\left[S\right]_i}$$
Epicardio: O'Hara et al., 2011, versión EPI
Midmiocardio: O'Hara et al., 2011, versión MID
Endocardio: O'Hara et al., 2011, versión ENDO
Purkinje: Stewart et al., 2009
Infarto/fibrosis: MacCannel et al., 2007
Isquemia aguda: Gironés-Sangüesa et al., 2020

Sistema His-Purkinje

Heterogeneidad ápex-base

Isquemia o infarto

Endocardium Mid-myocardium Epicardium

Multiscale cardiac simulations

Multiscale cardiac simulations

Universidad Nacional de Lomas de Zamora, Argentina Chema Ferrero

50 UNLZ

Normal tissue, sinus beats

Abnormal tissue (obstacle), sinus beats

Reentrant Cardiac Arrhythmias: summary

Sinus rhythm

Tema 9

- 9.1.- Fundamentos bioeléctricos de las arritmias por reentrada
- 9.2.- Simulación computacional de arritmias en isquemia miocárdica aguda
- 9.3.- Efecto de fármacos en arritmias en isquemia miocárdica aguda
- 9.4.- Terapia de ablación en infarto crónico
- 9.5.- Construcción de un modelo cardiaco 3D personalizado a paciente
- 9.6.- Mejora de la terapia de ablación en pacientes post-infarto mediante simulación

CRÉDITOS...

Universidad Politécnica de Valencia, España

Chema Ferrero Beatriz Trénor Lucía Romero Karen Cardona Mireia García-Darás Patricia Olcina Ana González Marta Gironés Claudia Esteban Inés Llorente

Politécnico di Milano, Italia José Félix Rodríguez

Universidad Nacional de Lomas de Zamora, Argentina

Elvio Heidenreich

Universidad de Cuenca, Ecuador Edison Carpio

Universidad Internacional de Valencia, España

Juan Francisco Gómez

Duke University, Singapore Frank Starmer

Universidad de Zaragoza, España Andrés Mena-Tóbar

POLITECNICO

MILANO 1863

Isquemia miocárdica aguda

(tiempo ÷ 25) [A Ferrero et al, 2018]

Ritmo Sinusal

[Gray et al., 1995]

Fibrilación Ventricular

Isquemia miocárdica aguda

(tiempo ÷ 25) [A Ferrero et al, 2018]

Ritmo Sinusal

7,000,000 de muertes al año

RIESGO DE SUFRIR ARRITMIAS

[Gray et al., 1995]

Fibrilación Ventricular

Los cambios metabólicos en isquemia miocárdica aguda...

... afectan a los canales iónicos

Modelo de potencial de acción en isquemia aguda

Modelo de potencial de acción en isquemia aguda

O'Hara (2011) ... modificado para poder simular isquemia aguda

Cambios en el potencial de acción ventricular inducidos por la isquemia

- Disminución de la duración del potencial de acción (APD)
- Disminución (en valor absoluto) del potencial de reposo (V_{rep})
- Disminución de la amplitud máxima del potencial de acción (V_{max})
- Disminución de la pendiente máxima de despolarización (V_{max})
- Aumento del periodo refractario (RP)

Voltaje (V)

[Carpio et al., 2020]

Vulnerabilidad a las arritmias en isquemia miocárdica

adapted from Smith et al. Circulation 92:3051-60, 1995

Tema 9

- 9.1.- Fundamentos bioeléctricos de las arritmias por reentrada
- 9.2.- Simulación computacional de arritmias en isquemia miocárdica aguda
- 9.3.- Efecto de fármacos en arritmias en isquemia miocárdica aguda
- 9.4.- Terapia de ablación en infarto crónico
- 9.5.- Construcción de un modelo cardiaco 3D personalizado a paciente
- 9.6.- Mejora de la terapia de ablación en pacientes post-infarto mediante simulación

Efecto de fármacos en isquemia aguda La lidocaína modula la vulnerabilidad a la FV en isquemia aguda

50

Efecto de fármacos en isquemia aguda El pinacidil modula la vulnerabiliad a la FV en isquemia aguda

50

Universidad Nacional de Lomas de Zamora, Argentina

Chema Ferrero

Efecto de fármacos en isquemia aguda

El pinacidil modula la Ventana vulnerable a la FV en isquemia aguda

Universidad Nacional de Lomas de Zamora, Argentina

A Ferrero et al, 2005

Chema Ferrero

Tema 9

- 9.1.- Fundamentos bioeléctricos de las arritmias por reentrada
- 9.2.- Simulación computacional de arritmias en isquemia miocárdica aguda
- 9.3.- Efecto de fármacos en arritmias en isquemia miocárdica aguda
- 9.4.- Terapia de ablación en infarto crónico
- 9.5.- Construcción de un modelo cardiaco 3D personalizado a paciente
- 9.6.- Mejora de la terapia de ablación en pacientes post-infarto mediante simulación

CRÉDITOS...

Universidad Nacional de Lomas de Zamora, Argentina Elvio Heidenreich

Universidad Politécnica de Valencia, España

Chema Ferrero Alejandro López Dani Ferrero

Universidad de Valencia, España

Rafa Sebastián

Universidad Internacional de Valencia, España

Hospital Clínico Universitario de Valencia

Maite Izquierdo

Ricardo Ruiz

Juan Francisco Gómez

Hospital Clínia

Iniversitari de València

King's College, London, UK Martin Bishop

Politécnico di Milano, Italia José Félix Rodríguez

Universidad de Zaragoza, España Andrés Mena-Tóbar

Myocardial ischemia and infarction

0-30 min: ACUTE ISCHEMIA

Myocardial ischemia and infarction

Myocardial ischemia and infarction

Electroanatomical map of the endocardium...

RF ablation

[adapted from Ashikaga et al, Heart Rhythm 2013]

.. the computational model must be personalized (i.e. patient-specific)

Tema 9

- 9.1.- Fundamentos bioeléctricos de las arritmias por reentrada
- 9.2.- Simulación computacional de arritmias en isquemia miocárdica aguda
- 9.3.- Efecto de fármacos en arritmias en isquemia miocárdica aguda
- 9.4.- Terapia de ablación en infarto crónico
- 9.5.- Construcción de un modelo cardiaco 3D personalizado a paciente
- 9.6.- Mejora de la terapia de ablación en pacientes post-infarto mediante simulación

1. Cardiac geometry

Detailed endocardium

MRI images

Bioelectricidad y Modelado Bioeléctrico del Corazón Universidad Nacional de Lomas de Zamora, Argentina

2. Infarct scar (core + border zone)

3. Fibrosis

TEMA 9.- Simulación compu

4. Myocardial structure (fiber orientation)

MRI-DTI (Diffusion Tensor Imaging)

Bioelectricidad y Modelado Bioeléctrico del Corazón Universidad Nacional de Lomas de Zamora, Argentina

4. Myocardial structure (fiber orientation)

Fiber orientation estimation

MRI-DTI (Diffusion Tensor Imaging)

Bioelectricidad y Modelado Bioeléctrico del Corazón Universidad Nacional de Lomas de Zamora, Argentina Chema Ferrero

4. Myocardial structure (fiber orientation)

5. Cardiac conduction system (His-Purkinje)

Inverse estimation of the Purkinje tree

Electro-anatomical map (CARTO) [LAT]

> ["Estimation of Purkinje trees from electro-anatomical mapping of the left ventricle using minimal cost geodesics" Cárdenes, Sebastián, Soto, Berruezo & Cámara, 2015]

His Bundle

6. Electrophysiologic heterogeneity

Transmural heterogeneity

Propagation model

$$\frac{1}{\left(1+\beta\right)S_{v}}\nabla\cdot\left(\overline{\overline{\sigma}}_{i}\nabla V_{m}\right)=C_{m}\frac{\partial V_{m}}{\partial t}+\sum_{S}I_{S}$$

Action potential and ionic current model

ionic currents

ionic conductances

channel gates

ionic concentrations

 $I_{S}(t) = g_{S} \left(V_{m} - E_{S} \right)$ $g_{S}(t) = G_{S} f_{S1}(t) f_{S2}(t) \dots f_{Sn_{S}}(t)$

$$\frac{df_k}{dt} = \frac{f_{k\infty}(V_m) - f_k(t)}{\tau_{fk}(V_m)} \qquad k = 1...n$$
$$\frac{d[S]_i}{dt} = \frac{1}{Fv_i} \sum_n I_{S,n}(t) \quad (S:Na^+, K^+, Ca^{2+}, CI^+)$$

TEMA 9.- Simulación computacional de arritmias cardiacas

Bioelectricidad y Modelado Bioeléctrico del Corazón Universidad Nacional de Lomas de Zamora, Argentina Chema Ferrero

Action potential models

- A. Healthy EPI: O'Hara et al., 2011
- B. Healthy M-cells: O'Hara et al., 2011
- C. Healthy ENDO: O'Hara et al., 2011
- D. Purkinje fib.: Stewart et al., 2009
- E. Border zone: modified Ten Tuscher et al., 2006
- F. Fibroblasts: MacCannel et al., 2007

Propagation model

$$\frac{1}{(1+\beta)S_{v}}\nabla\cdot\left(\overline{\overline{\sigma}}_{i}\nabla V_{m}\right)=C_{m}\frac{\partial V_{m}}{\partial t}+\sum_{S}I_{S}$$

Action potential and ionic current model

ionic currents

ionic conductances

channel gates

ionic concentrations

$$I_{S}(t) = g_{S} \left(V_{m} - E_{S} \right)$$

$$g_{s}(t) = G_{s} f_{s1}(t) f_{s2}(t) \dots f_{sn_{s}}(t)$$

$$\frac{df_k}{dt} = \frac{f_{k\infty}(V_m) - f_k(t)}{\tau_{fk}(V_m)} \qquad k = 1...n$$
$$\frac{d[S]_i}{dt} = \frac{1}{Fv_i} \sum_n I_{S,n}(t) \quad (S:Na^+, K^+, Ca^{2+}, Cl^-)$$

Embedding the heart in a torso model

MRI

Tema 9

- 9.1.- Fundamentos bioeléctricos de las arritmias por reentrada
- 9.2.- Simulación computacional de arritmias en isquemia miocárdica aguda
- 9.3.- Efecto de fármacos en arritmias en isquemia miocárdica aguda
- 9.4.- Terapia de ablación en infarto crónico
- 9.5.- Construcción de un modelo cardiaco 3D personalizado a paciente
- 9.6.- Mejora de la terapia de ablación en pacientes post-infarto mediante simulación

ECG

López-Pérez et al., 2019

ORIGINAL RESEARCH published: 15 May 2019 doi: 10.3389/fphys.2019.00580

Personalized Cardiac Computational Models: From Clinical Data to Simulation of Infarct-Related Ventricular Tachycardia

Alejandro Lopez-Perez^{1*}, Rafael Sebastian², M. Izquierdo^{3,4}, Ricardo Ruiz^{3,4}, Martin Bishop⁵ and Jose M. Ferrero¹

Bioelectricidad y Modelado Bioeléctrico del Corazón Universidad Nacional de Lomas de Zamora, Argentina Chema Ferrero

López-Pérez et al., 2019

Alejandro Lopez-Perez ¹⁺, Rafael Sebastian², M. Izquierdo^{3,4}, Ricardo Ruiz^{3,4}, Martin Bishop⁵ and Jose M. Ferrero¹

Precordial lead V6 - WITH electrical remodelling in the BZ

López-Pérez et al., 2019

López-Pérez et al., 2019

References

Lopez-Perez et al. BioMedical Engineering OnLine (2015) 14:35 DOI 10.1186/s12938-015-0033-5

BioMedical Engineering OnLine

Open Access

REVIEW

Three-dimensional cardiac computational modelling: methods, features and applications

Alejandro Lopez-Perez^{1*}, Rafael Sebastian² and Jose M Ferrero¹

ORIGINAL RESEARCH published: 15 May 2019 doi: 10.3389/fphys.2019.00580

Personalized Cardiac Computational Models: From Clinical Data to Simulation of Infarct-Related Ventricular Tachycardia

Alejandro Lopez-Perez^{1*}, Rafael Sebastian², M. Izquierdo^{3,4}, Ricardo Ruiz^{3,4}, Martin Bishop⁵ and Jose M. Ferrero¹

Bibliografía

- Ferrero JM, Trénor B & Romero L, "Multiscale computational analysis of the bioelectric consequences of myocardial ischaemia and infarction", European Journal of Pacing, Arrhythmias and Cardiac Electrophysiology (Europace) 2014 Mar;16(3):405-15.
- Moréna H, Janse MJ, Fiolet JW, Krieger WJ, Crijns H, Durrer D, "Comparison of the effects of regional ischemia, hypoxia, hyperkalemia, and acidosis on intracellular and extracellular potentials and metabolism in the isolated porcine heart", Circ Res. 1980 May;46(5):634-46
- Janse MJ, Kleber AG, "Electrophysiological changes and ventricular arrhythmias in the early phase of regional myocardial ischemia", Circ Res. 1981 Nov;49(5):1069-81
- Cascio WE, "Myocardial ischemia: what factors determine arrhythmogenesis?", J Cardiovasc Electrophysiol. 2001 Jun;12(6):726-9.
- Clayton RH, Holden AV, "Dispersion of cardiac action potential duration and the initiation of re-entry: a computational study", Biomed Eng Online. 2005 Feb 18;4(1):11.
- Ferrero JM Jr, Sáiz J, Ferrero JM, Thakor NV, "Simulation of action potentials from metabolically impaired cardiac myocytes. Role of ATP-sensitive K+ current", Circ Res. 1996 Aug;79(2):208-21.
- Rodriguez B & Ferrero (Jr) JM, "Mechanistic investigation of extracellular K+ accumulation during acute myocardial ischemia: a simulation study", Am J Physiol Heart Circ Physiol. 2002 Aug;283(2):H490-500.
- Weiss JN, Venkatesh N, Lamp ST, "ATP-sensitive K+ channels and cellular K+ loss in hypoxic and ischaemic mammalian ventricle", J Physiol. 1992 Feb;447:649-73.
- Kléber AG, Janse MJ, van Capelle FJ, Durrer D, "Mechanism and time course of S-T and T-Q segment changes during acute regional myocardial ischemia in the pig heart determined by extracellular and intracellular recordings", Circ Res. 1978 May;42(5):603-13.

Bibliografía

- JF Rodriguez, EA Heidenreich, L Romero, JM Ferrero (Jr), M Doblare, "Post-Repolarization Refractoriness in Human Ventricular Cardiac Cells", Computers in Cardiology 2008 35:581-584.
- Ferrero (Jr) JM; Saiz J; Ferrero (Sr) JM; Thakor NV, "Postrepolarization refractoriness in ventricular cardiac cells: a simulation study", Computers in Cardiology 1999 26:487-490
- Downar E, Janse MJ, Durrer D, "The effect of "ischemic" blood on transmembrane potentials of normal porcine ventricular myocardium", Circulation. 1977 Mar;55(3):455-62
- Coronel R, Fiolet JW, Wilms-Schopman FJ, Schaapherder AF, Johnson TA, Gettes LS, Janse MJ, "Distribution of extracellular potassium and its relation to electrophysiologic changes during acute myocardial ischemia in the isolated perfused porcine heart", Circulation. 1988 May;77(5):1125-38.
- Ferrero (Jr) JM; Trénor B; Rodríguez B; Sáiz J, "Electrical Activity and Reentry During Acute Regional Myocardial Ischemia: Insights from Simulations", International Journal of Bifurcation and Chaos 2003; 13(12):3703-3715.
- Heidenreich EA, Ferrero JM, Doblaré M, Rodríguez JF, "Adaptive Macro Finite Elements for the Numerical Solution of Monodomain Equations in Cardiac Electrophysiology", Annals of Biomedical Engineering 2010; 38(7):2331-2345.
- Heidenreich EA, Gaspar FJ, Ferrero JM, J. F. Rodríguez, "Compact schemes for anisotropic reaction-diffusion equations with adaptive time step", International Journal for Numerical Methods in Engineering 2010; 82(8):1022-1043.
- Trénor B, Romero L, Ferrero JM Jr, Sáiz J, Moltó G, Alonso JM, "Vulnerability to reentry in a regionally ischemic tissue: a simulation study", Ann Biomed Eng. 2007 Oct;35(10):1756-70.
- Romero L, Trénor B, Alonso JM, Tobón C, Saiz J, Ferrero JM Jr, "The relative role of refractoriness and source-sink relationship in reentry generation during simulated acute ischemia", Ann Biomed Eng. 2009 Aug;37(8):1560-71.

